Abstract
Several methods have been developed to construct λ -free automata that represent a regular expression. Among the most widely known are the position automaton (Glushkov), the partial derivatives automaton (Antimirov) and the follow automaton (Ilie and Yu). All these automata can be obtained with quadratic time complexity, thus, the comparison criterion is usually the size of the resulting automaton. The methods that obtain the smallest automata (although, for general expressions, they are not comparable), are the follow and the partial derivatives methods. In this paper, we propose another method to obtain a λ -free automaton from a regular expression. The number of states of the automata we obtain is bounded above by the size of both the partial derivatives automaton and of the follow automaton. Our algorithm also runs with the same time complexity of these methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.