Abstract

Clinical decision making needs to be supported by evidence that treatments are beneficial to individual patients. Although randomized control trials (RCTs) are the gold standard for testing and introducing new drugs, due to the focus on specific questions with respect to establishing efficacy and safety vs. standard treatment, they do not provide a full characterization of the heterogeneity in the final intended treatment population. Conversely, real-world observational data, such as electronic health records (EHRs), contain large amounts of clinical information about heterogeneous patients and their response to treatments. In this paper, we introduce the main opportunities and challenges in using observational data for training machine learning methods to estimate individualized treatment effects and make treatment recommendations. We describe the modeling choices of the state-of-the-art machine learning methods for causal inference, developed for estimating treatment effects both in the cross-section and longitudinal settings. Additionally, we highlight future research directions that could lead to achieving the full potential of leveraging EHRs and machine learning for making individualized treatment recommendations. We also discuss how experimental data from RCTs and Pharmacometric and Quantitative Systems Pharmacology approaches can be used to not only improve machine learning methods, but also provide ways for validating them. These future research directions will require us to collaborate across the scientific disciplines to incorporate models based on RCTs and known disease processes, physiology, and pharmacology into these machine learning models based on EHRs to fully optimize the opportunity these data present.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.