Abstract

Scenarios are increasingly used for envisioning future social-ecological changes and consequences for human well-being. One approach integrates qualitative storylines and biophysical models to explore potential futures quantitatively and maximize public engagement. However, this integration process is challenging and sometimes oversimplified. Using the Yahara Watershed (Wisconsin, USA) as a case study, we present a transparent and reproducible roadmap to develop spatiotemporally explicit biophysical inputs [climate, land use/cover (LULC), and nutrients] that are consistent with scenario narratives and can be linked to a process-based biophysical modeling suite to simulate long-term dynamics of a watershed and a range of ecosystem services. Our transferrable approach produces daily weather inputs by combining climate model projections and a stochastic weather generator, annual narrative-based watershed-scale LULC distributed spatially using transition rules, and annual manure and fertilizer (nitrogen and phosphorus) inputs based on current farm and livestock data that are consistent with each scenario narrative.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.