Abstract

BackgroundUtilization of the natural genetic variation in traditional breeding programs remains a major challenge in crop plants. The identification of candidate genes underlying, or associated with, phenotypic trait QTLs is desired for effective marker assisted breeding. With the advent of high throughput -omics technologies, screening of entire populations for association of gene expression with targeted traits is becoming feasible but remains costly. Here we present the identification of novel candidate genes for different potato tuber quality traits by employing a pooling approach reducing the number of hybridizations needed. Extreme genotypes for a quantitative trait are collected and the RNA from contrasting bulks is then profiled with the aim of finding differentially expressed genes.ResultsWe have successfully implemented the pooling strategy for potato quality traits and identified candidate genes associated with potato tuber flesh color and tuber cooking type. Elevated expression level of a dominant allele of the β-carotene hydroxylase (bch) gene was associated with yellow flesh color through mapping of the gene under a major QTL for flesh color on chromosome 3. For a second trait, a candidate gene with homology to a tyrosine-lysine rich protein (TLRP) was identified based on allele specificity of the probe on the microarray. TLRP was mapped on chromosome 9 in close proximity to a QTL for potato cooking type strengthening its significance as a candidate gene. Furthermore, we have performed a profiling experiment targeting a polygenic trait, by pooling individual genotypes based both on phenotypic and marker data, allowing the identification of candidate genes associated with the two different linkage groups.ConclusionsA pooling approach for RNA-profiling with the aim of identifying novel candidate genes associated with tuber quality traits was successfully implemented. The identified candidate genes for tuber flesh color (bch) and cooking type (tlrp) can provide useful markers for breeding schemes in the future. Strengths and limitations of the approach are discussed.

Highlights

  • Utilization of the natural genetic variation in traditional breeding programs remains a major challenge in crop plants

  • Genetic markers generated in one population can be quite distant from the physical location of the responsible polymorphism(s) in another and often difficult to translate to actual breeding material as the screened population does not always represent a similar genetic origin

  • Within the diploid C × E crossing population, potato tuber flesh color was quantitatively scored on a scale from 1 to 9 as described in methods

Read more

Summary

Introduction

Utilization of the natural genetic variation in traditional breeding programs remains a major challenge in crop plants. The identification of candidate genes underlying, or associated with, phenotypic trait QTLs is desired for effective marker assisted breeding. With the advent of high throughput -omics technologies, screening of entire populations for association of gene expression with targeted traits is becoming feasible but remains costly. The identification of the responsible gene(s) and their allelic variation and many of these traits, major and minor QTLs have been identified in individual populations, the associated genetic markers identified are not necessarily useful in breeding schemes due to lack of sufficient resolution. The clarification of the ‘true’ polymorphism(s) underlying trait variation is crucial if we want to understand and utilize the different evolutionary adaptation strategies that plants have taken which has provided us with the wealth of phenotypic variation observed today. The identification of the responsible gene underlying a trait QTL can lead to additional levels of information through subsequent allele mining or haplotyping across a range of cultivars

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.