Abstract

Garnet-type Li7La3Zr2O12 (LLZO) has been recognized as a candidate solid electrolyte for high-safety Li-anode based solid-state batteries because of its electro-chemical stability against Li-metal and high ionic conductivity. Solvent (e.g., isopropanol (IPA)) has been commonly applied for preparing LLZO powders and ceramics. However, the deterioration of the proton-exchange between LLZO and IPA/absorbed moisture during the mixing and tailoring route has aroused less attention. In this study, a solvent-free dry milling route was developed for preparing the LLZO powders and ceramics. For orthogonal four categories of samples prepared using solvent-free and IPA-assisted routes in the mixing and tailoring processes, the critical evaluation was conducted on the crystallinity, surficial morphology, and contamination of as-calcinated and as-tailored particles, the cross-sectional microstructure of green and sintered pellets, the morphology and electro-chemical properties of grain boundaries in ceramics, as well as the interfacial resistance and performance of Li anode based symmetric batteries. The wet route introduced Li-rich contaminations (e.g., LiOH∙H2O and Li2CO3) onto the surfaces of LLZO particles and Li-Ta-O segregations at the adjacent and triangular grain boundaries. The LLZO solid electrolytes prepared through dry mixing in combination with the dry tailoring route without the use of any solvent were found to the optimal performance. The fundamental material properties in the whole LLZO preparation process were found, which are of guiding significance to the development of LLZO powder and ceramic production craft.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call