Abstract

We report the results of comparative studies of the swelling behavior of polyelectrolyte (PE) and polyampholyte (PA) microgels in response to pH, ionic strength, temperature, and solvent composition. Polyelectrolyte microgels used were cross-linked binary copolymers of poly(N-isopropylacrylamide) (polyNIPAm) and acrylic acid (AA) or vinyl imidazole (VI). The PA microgels with an excess of either cationic or anionic groups swelled at low or high pH values, respectively, analogous to PE microgels. The PA microgels with similar amounts of AA and VI groups exhibited marked swelling at both high and low pH values. All PA microgels shrank in the intermediate range of pH due to electrostatic attraction between charged AA and VI moieties. In moderately concentrated salt solutions, PA microgels underwent swelling showing antipolyelectrolyte behavior. The extent of swelling of PA microgels increased with rise in AA content. The temperature-dependent contraction of both PE and PA microgels occurred at higher temperatures when AA and VI groups were charged and hydrophilic. Ion pairing between the AA and VI groups increased the extent of the temperature-induced deswelling in PA microgels. The solvent-dependent swelling of PE and PA microgels in ethanol–water mixtures was governed by competing electrostatic and cosolvency effects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call