Abstract

Pollinators influence patterns of plant speciation, and one intuitive hypothesis is that pollinators affect rates of plant diversification through their effects on pollen dispersal. By specifying mating events and pollen flow across the landscape, distinct types of pollinators may cause different opportunities for allopatric speciation. This pollen dispersal-dependent speciation hypothesis predicts that pollination mode has effects on the spatial context of mating events that scale up to impact population structure and rates of species formation. Here I consider recent comparative studies, including genetic analyses of plant mating events, population structure and comparative phylogenetic analyses, to examine evidence for this model. These studies suggest that highly mobile pollinators conduct greater gene flow within and among populations, compared to less mobile pollinators. These differences influence patterns of population structure across the landscape. However, the effects of pollination mode on speciation rates is less predictable. In some contexts, the predicted effects of pollen dispersal are outweighed by other factors that govern speciation rates. A multiscale approach to examine effects of pollination mode on plant mating system, population structure and rates of diversification is key to determining the role of pollen dispersal on plant speciation for model clades.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.