Abstract
Two-dimensional (2D) transition metal dichalcogenides (TMDs) have recently received great deal of attention due to their unique properties associated with the reduced dimensionality of the system. The properties of these materials have been shown to be affected by atomic defects in the atomic network. The very structure of these materials which are composed from three atomic layers only, combined with dramatic improvements in microscopy techniques, made it possible to study the behavior of defects in these systems with unprecedented accuracy. Various point and line defects were identified, and their effects on the properties of the systems were accessed. It was demonstrated that point defects induced by electron beam irradiation coalesce in line defects, but their quasi-one dimensional atomic structure varies from member to member in the transition metal dichalcogenides family. In this review, we summarize recent experimental and theoretical findings in this area, discuss how the line structures appear due to the agglomeration of point defects, and dwell upon how line defects can be used to engineer properties of 2D TMDs. Finally, we address the challenges in this field and issues which still lack the explanation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.