Abstract

In [4] Kauffman and Vogel constructed a rigid vertex regular isotopy invariant for unoriented four-valent graphs embedded in three dimensional space. It assigns to each embedded graph G a polynomial, denoted [G], in three variables, A, B and a, satisfying the skein relations: [Formula: see text] and is defined in terms of a state-sum and the Dubrovnik polynomial for links. Using the graphical calculus of [4] it is shown that the polynomial of a planar graph can be calculated recursively from that of planar graphs with less vertices, which also allows the polynomial of an embedded graph to be calculated without resorting to links. The same approach is used to give a direct proof of uniqueness of the (normalized) polynomial restricted to planar graphs. In the case B=A-1 and a=A, it is proved that for a planar graph G we have [G]=2c-1(-A-A-1)v, where c is the number of connected components of G and v is the number of vertices of G. As a corollary, a necessary, but not sufficient, condition is obtained for an embedded graph to be ambient isotopic to a planar graph. In an appendix it is shown that, given a polynomial for planar graphs satisfying the graphical calculus, and imposing the first skein relation above, the polynomial extends to a rigid vertex regular isotopy invariant for embedded graphs, satisfying the remaining skein relations. Thus, when existence of the planar polynomial is guaranteed, this provides a direct way, not depending on results for the Dubrovnik polynomial, to show consistency of the polynomial for embedded graphs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call