Abstract
The dominant inferential approach to human 3D perception assumes a model of spatial encoding based on a physical description of objects and space. Prevailing models based on this physicalist approach assume that the visual system infers an objective, unitary and mostly veridical representation ofthe external world. However, careful consideration of the phenomenology of 3Dperception challenges these assumptions. I review important aspects of phenomenology, psychophysics and neurophysiology which suggest that human visual perception of 3D objects and space is underwritten by distinct and dissociated spatial encodings that are optimized for specific regions of space. Specifically, I argue that 3D perception is underwritten by at least three distinct encodings for (1) egocentric distance perception at the ambulatory scale, (2) exocentric distance (scaled depth) perception optimized for near space, and (3) perception of object shape and layout (unscaled depth). This tripartite division can more satisfactorily account for the phenomenology, psychophysics and adaptive logic of human 3D perception. This article is part of a discussion meeting issue 'New approaches to 3D vision'.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Philosophical transactions of the Royal Society of London. Series B, Biological sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.