Abstract

It is proven that the connected pathwidth of any graph G is at most 2*pw(G)+1, where pw(G) is the pathwidth of G. The method is constructive, i.e. it yields an efficient algorithm that for a given path decomposition of width k computes a connected path decomposition of width at most 2k+1. The running time of the algorithm is O(dk^2), where d is the number of `bags' in the input path decomposition. The motivation for studying connected path decompositions comes from the connection between the pathwidth and some graph searching games. One of the advantages of the above bound for connected pathwidth is an inequality $csn(G) <= 2*sn(G)+3$, where $csn(G)$ is the connected search number of a graph $G$ and $sn(G)$ is its search number, which holds for any graph $G$. Moreover, the algorithm presented in this work can be used to convert efficiently a given search strategy using $k$ searchers into a connected one using $2k+3$ searchers and starting at arbitrary homebase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.