Abstract

Spatial data clustering has played an important role in the knowledge discovery in spatial databases. However, due to the increasing volume and diversity of data, conventional spatial clustering methods are inefficient even on moderately large data sets, and usually fail to discover clusters with diverse shapes and densities. To address these challenges, we propose a two-phase clustering method named KMDD (clustering by combining K-means with density and distance-based method) to fast find clusters with diverse shapes and densities in spatial databases. In the first phase, KMDD uses a partition-based algorithm (K-means) to cluster the data set into several relatively small spherical or ball-shaped subclusters. After that, each subcluster is given a local density; to merge subclusters, KMDD utilizes the idea that genuine cluster cores are characterized by a higher density than their neighbor subclusters and by a relatively large distance from subclusters with higher densities. Extensive experiments on both synthetic and real-world data sets demonstrate that the proposed algorithm has a near-linear time complexity with respect to the data set size and dimension, and has the capability to find clusters with diverse shapes and densities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.