Abstract
SummaryPower laws and power laws with exponential cut‐off are two distinct families of distributions on the positive real half‐line. In the present paper, we propose a unified treatment of both families by building a family of distributions that interpolates between them, which we call Interpolating Family (IF) of distributions. Our original construction, which relies on techniques from statistical physics, provides a connection for hitherto unrelated distributions like the Pareto and Weibull distributions, and sheds new light on them. The IF also contains several distributions that are neither of power law nor of power law with exponential cut‐off type. We calculate quantile‐based properties, moments and modes for the IF. This allows us to review known properties of famous distributions on and to provide in a single sweep these characteristics for various less known (and new) special cases of our Interpolating Family.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.