Abstract

Data preparation is still a major bottleneck for many data science projects. Even though many sophisticated algorithms and tools have been proposed in the research literature, it is difficult for practitioners to integrate them into their data wrangling efforts. We present openclean, a open-source Python library for data cleaning and profiling, openclean integrates data profiling and cleaning tools in a single environment that is easy and intuitive to use. We designed openclean to be extensible and make it easy to add new functionality. By doing so, it will not only become easier for users to access state-of-the-art algorithms for their data wrangling efforts, but also allow researchers to integrate their work and evaluate its effectiveness in practice. We envision openclean as a first step to build a community of practitioners and researchers in the field. In our demo, we outline the main components and design decisions in the development of openclean and demonstrate the current functionality of the library on real-world use cases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.