Abstract

Stochastic search is often the only viable option to address complex optimization problems. Recently, evolutionary algorithms have been shown to handle challenging continuous optimization problems related to protein structure modeling. Building on recent work in our laboratories, we propose an evolutionary algorithm for efficiently mapping the multi-basin energy landscapes of dynamic proteins that switch between thermodynamically stable or semi-stable structural states to regulate their biological activity in the cell. The proposed algorithm balances computational resources between exploration and exploitation of the nonlinear, multimodal landscapes that characterize multi-state proteins via a novel combination of global and local search to generate a dynamically-updated, information-rich map of a protein's energy landscape. This new mapping-oriented EA is applied to several dynamic proteins and their disease-implicated variants to illustrate its ability to map complex energy landscapes in a computationally feasible manner. We further show that, given the availability of such maps, comparison between the maps of wildtype and variants of a protein allows for the formulation of a structural and thermodynamic basis for the impact of sequence mutations on dysfunction that may prove useful in guiding further wet-laboratory investigations of dysfunction and molecular interventions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.