Abstract

Summary Understanding the integrated performance of complex artificially lifted wells on not normally manned (NNM), offshore platforms without invasive techniques represents a challenge not only to minimizing operating costs but also to optimizing production and thereby maximizing value. Often the analysis of such problems is hindered by the complex interactions between identified production constraints and by a lack of operating data. The Cliff Head oil field (offshore Western Australia) is developed with an innovative coiled-tubing deployed-electrical-submersible-pump (CT-ESP) artificial-lift system. This paper describes the process by which ESP and well data, in conjunction with a well-performance-modeling software, have been used as a powerful tool to diagnose well-performance issues and optimize production. Production trends were created on the basis of real-time production data to understand ESP performance. Individual-well models were created to identify potential causes of declining performance—in this case, the use of an ESP performance-limiting factor (PLF) indicating deteriorating ESP performance because of solids buildup. On the basis of the model results, chemical soaks were implemented on two production wells to remove flow restrictions within and around the ESPs. The treatments increased the oil-production rates by 17 to 48%. Following a debottlenecking study, reservoir simulation in combination with detailed ESP-performance analysis concluded that total-field-production improvements of up to 50% were possible. Consequently, the next phase of field development will install larger-capacity ESPs. This paper outlines how field data and desktop tools were combined successfully to monitor and diagnose well-performance issues to deliver material production enhancements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.