Abstract

We propose to perform imitation learning for dexterous manipulation with multi-finger robot hand from human demonstrations, and transfer the policy to the real robot hand. We introduce a novel single-camera teleoperation system to collect the 3D demonstrations efficiently with only an iPad and a computer. One key contribution of our system is that we construct a customized robot hand for each user in the simulator, which is a manipulator resembling the same structure of the operator's hand. It provides an intuitive interface and avoid unstable human-robot hand retargeting for data collection, leading to large-scale and high quality data. Once the data is collected, the customized robot hand trajectories can be converted to different specified robot hands (models that are manufactured) to generate training demonstrations. With imitation learning using our data, we show large improvement over baselines with multiple complex manipulation tasks. Importantly, we show our learned policy is significantly more robust when transferring to the real robot.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.