Abstract

In this study simulation of different nuclear fuel cycle scenarios are performed. The reference scenario corresponds to a medium size nuclear power country, with 10 light water reactors (LWRs). The study addresses long-term, equilibrium fuel cycle scenarios, with and without plutonium recycling (MOX) in LWRs and transuranics (TRU) burning in accelerator-driven systems (ADS). However, also short-term phase-out scenarios, including TRU burning in ADS, are performed. The equilibrium simulation showed that four ADS units, each of 800 MWt, are sufficient to burn an amount of plutonium and americium corresponding to the build-up of those elements. The phase-out simulation of a country adopting an approach to reduce the spent nuclear fuel inventory, showed that complementary burning of TRU in three to four ADS units appear suitable. The fuel cycle simulations have been performed using the Nuclear Fuel Cycle Simulation (NFCSim) code [C.G. Bathke, E.A. Schneider, NFCSim User's Manual, Los Alamos National Laboratory Report LA-UR-04-8369, 2004.] and the Monteburns code [D.I. Poston, H.R. Trellue, User's Manual, Version 2.0 for Monteburns, Version 1.0, LA-UR-99-4999, 1999.].

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call