Abstract

The paper describes the development of a fuzzy knowledge-based prototype system for conceptual design. This real time system is designed to infer user's sketching intentions, to segment sketched input and generate corresponding geometric primitives: straight lines, circles; arcs, ellipses, elliptical arcs, and B-spline curves. Topology information (connectivity, unitary constraints and pairwise constraints) is received dynamically from 2D sketched input and primitives. From the 2D topology information, a more accurate 2D geometry can be built up by applying a 2D geometric constraint solver. Subsequently, 3D geometry can be received feature by feature incrementally. Each feature can be recognised by inference knowledge in terms of matching its 2D primitive configurations and connection relationships. The system accepts not only sketched input, working as an automatic design tool, but also accepts user interactive input of both 2D primitives and special positional 3D primitives. This makes it easy and friendly to use. The system has been tested with a number of sketched inputs of 2D and 3D geometry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.