Abstract
Topological methods are important tools for data analysis, and recently receiving more and more attention in vector field visualization. In this paper, we give an introductory description to some important topological methods in vector field visualization. Besides traditional methods of vector field topology, space-time method and finite-time Lyapunov exponent, we also include in this survey Hodge decomposition, combinatorial vector field topology, Morse decomposition, and robustness, etc. In addition to familiar numerical techniques, more and more combinatorial tools emerge in vector field visualization. The numerical methods often rely on error-prone interpolations and interpolations, while combinatorial techniques produce robust but coarse features. In this survey, we clarify the relevant concepts and hope to guide future topological research in vector field visualization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.