Abstract
Material frame indifference implies that the solution in non-linear elasticity theory for a connected body rigidly rotated at its border is a rigid, stress-free, deformation. If the same problem is considered within linear elasticity theory, considered as an approximation to the true elastic situation, one should expect that if the angle of rotation is small, the body still undergoes a rigid deformation while the corresponding stress, though not zero, remains consistently small. Here, we show that this is true, in general, only for homogeneous bodies. Counterexamples of inhomogeneous bodies are presented for which, whatever small the angle of rotation is, the linear elastic solution is by no means a rigid rotation (in a particular case it is an “explosion”) while the stress may even become infinite. If the same examples are re-interpreted as problems in an elasticity theory based upon genuinely linear constitutive relations which retain their validity also for finite deformations, it is shown that they would deliver constraint reaction forces that are not in equilibrium in the actual, deformed, state. This furnishes another characterization of the impossibility of an exact linear constitutive theory for elastic solids with zero residual stress.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.