Abstract
AbstractThe National Ecological Observatory Network (NEON) is a multidecadal and continental-scale observatory with sites across the United States. Having entered its operational phase in 2018, NEON data products, software, and services become available to facilitate research on the impacts of climate change, land-use change, and invasive species. An essential component of NEON are its 47 tower sites, where eddy-covariance (EC) sensors are operated to determine the surface–atmosphere exchange of momentum, heat, water, and CO2. EC tower networks such as AmeriFlux, the Integrated Carbon Observation System (ICOS), and NEON are vital for providing the distributed observations to address interactions at the soil–vegetation–atmosphere interface. NEON represents the largest single-provider EC network globally, with standardized observations and data processing explicitly designed for intersite comparability and analysis of feedbacks across multiple spatial and temporal scales. Furthermore, EC is tightly integrated with soil, meteorology, atmospheric chemistry, isotope, phenology, and rich contextual observations such as airborne remote sensing and in situ sampling bouts. Here, we present an overview of NEON’s observational design, field operation, and data processing that yield community resources for the study of surface–atmosphere interactions. Near-real-time data products become available from the NEON Data Portal, and EC and meteorological data are ingested into AmeriFlux and FLUXNET globally harmonized data releases. Open-source software for reproducible, extensible, and portable data analysis includes the eddy4R family of R packages underlying the EC data product generation. These resources strive to integrate with existing infrastructures and networks, to suggest novel systemic solutions, and to synergize ongoing research efforts across science communities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.