Abstract

Haberle et al. (1996) and Joshi, Haberle & Reynolds (1997) demonstrated that for a planet receiving Earth-level insolation, a 100 mb pure CO2 atmosphere would carry enough heat flux to the dark side of a synchronously rotating planet (SRP) to prevent the atmosphere freezing out there. For a 1,500 mb pure CO2 atmosphere and 0.8 Earth insolation, liquid water could survive over much of the planet. Such high partial pressures of CO2 may seem like special pleading, but in fact, they are not essential for habitable conditions. The effective grey optical depth of the present terrestrial atmosphere (with just 350 ppm CO2, and H2O as the principal greenhouse gas) is approximately 0.9, as against 1.0 for a 1,000 mb pure CO2 atmosphere, so the latter serves merely as a useful approximation (for a truly Earth-type atmosphere, temperatures would be a few degrees lower over the lit hemisphere). Heath et al. (1999) concluded that even forest-habitable conditions, suitable for Earth-like trees (Heath 1996) were not to be ruled out on the basis of present knowledge. Recent work by Joshi (2004) has modelled the range of climatic options for certain land-sea distributions, and these leave the door open for further investigations of combinations of geography and insolation compatible with forest-habitability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.