Abstract

Halide methyltransferases (HMTs) enable the enzymatic synthesis of S‐adenosyl‐l‐methionine (SAM) from S‐adenosyl‐l‐homocysteine (SAH) and methyl iodide. Characterisation of a range of naturally occurring HMTs and subsequent protein engineering led to HMT variants capable of synthesising ethyl, propyl, and allyl analogues of SAM. Notably, HMTs do not depend on chemical synthesis of methionine analogues, as required by methionine adenosyltransferases (MATs). However, at the moment MATs have a much broader substrate scope than the HMTs. Herein we provide an overview of the discovery and engineering of promiscuous HMTs and how these strategies will pave the way towards a toolbox of HMT variants for versatile chemo‐ and regioselective biocatalytic alkylations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.