Abstract

Metal-organic frameworks (MOFs) have the potential to revolutionize the biotechnological and medical landscapes due to their easily tunable crystalline porous structure. Herein, the study presents MOFs' potential impact on proteomics, unveiling the diverse roles MOFs can play to boost it. Although MOFs are excellent catalysts in other scientific disciplines, their role as catalysts in proteomics applications remains largely underexplored, despite protein cleavage being of crucial importance in proteomics protocols. Additionally, the study discusses evolving MOF materials that are tailored for proteomics, showcasing their structural diversity and functional advantages compared to other types of materials used for similar applications. MOFs can be developed to seamlessly integrate into proteomics workflows due to their tunable features, contributing to protein separation, peptide enrichment, and ionization for mass spectrometry. This review is meant as a guide to help bridge the gap between material scientists, engineers, and MOF chemists and on the other side researchers in biology or bioinformatics working in proteomics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.