Abstract
AbstractWe give a model of set theory based on multisets in homotopy type theory. The equality of the model is the identity type. The underlying type of iterative sets can be formulated in Martin-Löf type theory, without Higher Inductive Types (HITs), and is a sub-type of the underlying type of Aczel’s 1978 model of set theory in type theory. The Voevodsky Univalence Axiom and mere set quotients (a mild kind of HITs) are used to prove the axioms of constructive set theory for the model. We give an equivalence to the model provided in Chapter 10 of “Homotopy Type Theory” by the Univalent Foundations Program.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.