Abstract

AbstractThe aim of this document is to present an efficient and systematic method of model‐based predictive control synthesis. Model predictive control requires using a model of a dynamical system, that can be linear, time‐varying, non‐linear, or identified from data. Finding a model that is both precise and simulatable at low computational cost can be challenging and time consuming due to requiring extensive knowledge of the system and physics as well as a large volume of data with relevant scenarios and sometimes a complicated identification work. (filtering noises and bias, data formatting, etc.) The proposed methodology begins with fine‐scale multi‐physics modeling, which is possible thanks to open model libraries (see Modelica). The obtained model is then simulated by considering ad hoc scenarios to generate data, which are then used to identify a neural network, that will support the predictive control syntheses. The systematic methodology is detailed and applied to the widely used control benchmark known as the quadruple tanks process. Results show that the methodology is accurately applied to optimize hyperparameters in finding a neural network model and to control the quadruple tanks process with the predictive controller.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.