Abstract

Herein, we demonstrate that a bottom-up approach, based on halogen bonding (XB), can be successfully applied for the design of a new type of ionic liquid crystals (ILCs). Taking advantages of the high specificity of XB for haloperfluorocarbons and the ability of anions to act as XB-acceptors, we obtained supramolecular complexes based on 1-alkyl-3-methylimidazolium iodides and iodoperfluorocarbons, overcoming the well-known immiscibility between hydrocarbons (HCs) and perfluorocarbons (PFCs). The high directionality of the XB combined with the fluorophobic effect, allowed us to obtain enantiotropic liquid crystals where a rigid, non-aromatic, XB supramolecular anion acts as mesogenic core.X-ray structure analysis of the complex between 1-ethyl-3-methylimidazolium iodide and iodoperfluorooctane showed the presence of a layered structure, which is a manifestation of the well-known tendency to segregation of perfluoroalkyl chains. This is consistent with the observation of smectic mesophases. Moreover, all the reported complexes melt below 100 °C, and most are mesomorphic even at room temperature, despite that the starting materials were non-mesomorphic in nature.The supramolecular strategy reported here provides new design principles for mesogen design allowing a totally new class of functional materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.