Abstract

Through biomineralization, calcareous composites are produced with exceptional properties, evolution-optimized for specific function. The bioinspired quest to understand how properties are controlled and enhanced is motivated by their fundamental and technological significance. The incorporation of small molecules and/or biopolymers as inter- and intra-crystalline additives in the CaCO3 matrix, is widely employed by organisms to achieve diverse functions. The interactions between the components during the early events within the precipitation medium, and when entrapped through precipitation-crystallization, are key players of process–property regulation. In addition to identifying the bulk matrices and the incorporated molecules, we show how solid-state NMR methods are tailored to directly report the chemical-structural details of the inorganic interface that surrounds an occlusion. Solid-state NMR is uniquely suited for that and is applicable to stable or spontaneously transforming lattices, crystalline or amorphous. Our findings are grouped to highlight the connection between the molecular level and tunability of macroscopic properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.