Abstract

AbstractRadiation damage formation in iron has been investigated using the method of molecular dynamics simulation. The MD simulations have been used to determine primary defect production parameters for cascade energies up to 50 keV at temperatures from 100 to 900K. The energy dependence of these parameters has been used to determine appropriate neutron-energy- spectrum averaged damage production cross sections for various irradiation environments. Two applications of these effective cross sections are discussed. The first is an evaluation of neutron energy spectrum effects in commercial fission reactor pressure vessels. The second example deals with the use of these cross sections in the source term of a kinetic model used to predict void swelling and microstructural evolution. The simulation of the primary damage event by MD involves times less than 100 ps and a size scale of a few tens of nm, while the kinetic simulation encompasses several years and macroscopic sizes. This use of the MD results to develop an improved source term for rate theory modeling provides a simple example of multiscale modeling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call