Abstract
This paper presents a methodology to design the control part of a proton exchange membrane fuel cell (FC) stack. The objective is to control the FC voltage. This methodology is based on an energetic macroscopic representation (EMR) of the FC and leads to a so-called maximal control structure (MCS). The MCS is a step-by-step inversion of the EMR (inversion-model-based control structure). The control design process is based on an explicit definition of the problem. Basically, for instance, the tuning inputs, the system objectives, or constraints are highlighted to organize the control. Moreover, the MCS shows the places where sensors are required and controllers are requested. Unfortunately, the MCS is only a theoretical control structure. Consequently, a realistic structure needs some simplifications, leading to a so-called practical control structure. The FC model is first presented and experimentally validated. The designed control structure is then simulated, and the results are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.