Abstract

MicroRNAs (miRNAs), 22 nucleotides long molecules with the function to reduce gene expression by inhibiting mRNA translation through partial complementary to one or more messenger RNA (mRNA) molecules. A single miRNA can reduce the expression levels of hundreds of genes and one mRNA can be a target for many miRNAs.Despite the study models used so far, miRNAs and mRNAs cannot be seen as acting in an isolated manner or even “in pairs”. They most likely exert their complex actions through numerous overlapping interrelations. One of the models depicting interdependence of intracytoplasmic RNAs is the crosstalk model. It is based on a competition between several target mRNAs which are regulated by the same miRNA.In this paper, we will discuss the mobility mechanism of miRNAs, recently suggested by data from “single particle tracking” experiments. These data suggests that miRNA intracellular mobility may be of “intermittent active transport”(IAT) type. IAT is a mobility model composed by alternation of active transport (AT) and Brownian motion (BM).Based on a mathematical model, we concluded that, AT phase may explain the efficiency in reaching far targets and the BM phase may explain the competition. Furthermore, we suggest that the interaction between miRNAs and their targets depends on the concentration of the molecules, the affinity between the molecules and also on the intracellular localization of the molecules. Hence, the probability that a miRNA interacts with its target depends also on the distance to the target and the macromolecular crowding.Taken together, our data proposes an intracytoplasmic mobility mechanism for miRNA and shows that this model can partially explain the RNA crosstalk.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.