Abstract

Due to reductions in both time and cost, group testing is a popular alternative to individual-level testing for disease screening. These reductions are obtained by testing pooled biospecimens (eg, blood, urine, swabs, etc.) for the presence of an infectious agent. However, these reductions come at the expense of data complexity, making the task of conducting disease surveillance more tenuous when compared to using individual-level data. This is because an individual's disease status may be obscured by a group testing protocol and the effect of imperfect testing. Furthermore, unlike individual-level testing, a given participant could be involved in multiple testing outcomes and/or may never be tested individually. To circumvent these complexities and to incorporate all available information, we propose a Bayesian generalized linear mixed model that accommodates data arising from any group testing protocol, estimates unknown assay accuracy probabilities and accounts for potential heterogeneity in the covariate effects across population subgroups (eg, clinic sites, etc.); this latter feature is of key interest to practitioners tasked with conducting disease surveillance. To achieve model selection, our proposal uses spike and slab priors for both fixed and random effects. The methodology is illustrated through numerical studies and is applied to chlamydia surveillance data collected inIowa.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.