Abstract

By starting from a microscopic quantum mechanical description of Josephson dynamics of a one-dimensional array of N coupled superconductors, we obtain a set of linear differential equations for the system order parameter and for additional macroscopic physical quantities. With opportune considerations, we adapt this description to two coupled superconductors, obtaining the celebrated Feynman model for Josephson junctions. These results confirm the correspondence between the microscopic picture and the semi-classical Ohta’s model adopted in describing the superconducting phase dynamics in multi-barrier Josephson junctions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call