Abstract

AbstractIt remains highly desired but a great challenge to achieve atomically dispersed metals in high loadings for efficient catalysis. Now porphyrinic metal–organic frameworks (MOFs) have been synthesized based on a novel mixed‐ligand strategy to afford high‐content (1.76 wt %) single‐atom (SA) iron‐implanted N‐doped porous carbon (FeSA‐N‐C) via pyrolysis. Thanks to the single‐atom Fe sites, hierarchical pores, oriented mesochannels and high conductivity, the optimized FeSA‐N‐C exhibits excellent oxygen reduction activity and stability, surpassing almost all non‐noble‐metal catalysts and state‐of‐the‐art Pt/C, in both alkaline and more challenging acidic media. More far‐reaching, this MOF‐based mixed‐ligand strategy opens a novel avenue to the precise fabrication of efficient single‐atom catalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.