Abstract

A diversity of defence colourations that shift over time provides protection against natural enemies. Adaptations for camouflage depend on an organism’s interactions with the natural environment (predators, habitat), which can change ontogenetically. Wallace’s flying frogs (Rhacophorus nigropalmatus) are cryptic emerald green in their adult life stage, but juveniles are bright red and develop white spots on their back 1 month after metamorphosis. This latter conspicuous visual appearance might function as antipredator strategy, where frogs masquerade as bird or bat droppings so that predators misidentified them as inedible objects. To test this idea, we created different paraffin wax frog models—red with white spots, red without white spots, green, and unpainted—and placed them in equal numbers within a > 800 m2 rainforest house at the Vienna Zoo. This environment closely resembles the Bornean rainforest and includes several free-living avian predators of frogs. We observed an overall hit rate of 15.5%. A visual model showed that the contrast of red, green and control models against the background colouration could be discriminated by avian predators, whereas green models had less chromatic difference than red morphs. The attack rate was significantly greater for red but was reduced by half when red models had white spots. The data therefore supports the hypothesis that the juvenile colouration likely acts as a masquerade strategy, disguising frogs as animal droppings which provides similar protection as the cryptic green adult colour. We discuss the ontogenetic colour change as a possible antipredator strategy in relation to the different habitats used at different life stages.Significance statementPredation pressure and the evolution of antipredator strategies site at the cornerstone of animal-behaviour research. Effective antipredator strategies can change in response to different habitats that animals use during different life stages. We study ontogenetic shifts in colour change as dynamic antipredator strategy in juvenile and adult Wallace’s flying frogs. We show that the unusual colour pattern of juveniles (bright red with small white spots) likely functions as a masquerade of animal droppings. Specifically, we show that white dotting, which can be associated with animal faeces, acts as the main visual feature that turns an otherwise highly conspicuous individual into a surprisingly camouflaged one. To our knowledge, this is the first experimental exploration of a vertebrate masquerading as animal droppings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call