Abstract
We establish an exact formula relating the survival probability for certain Lévy flights (viz. asymmetric α-stable processes where ) with the survival probability for the order statistics of the running maxima of two independent Brownian particles. This formula allows us to show that the persistence exponent δ in the latter non-Markovian case is simply related to the persistence exponent θ in the former Markovian case via: . Thus, our formula reveals a link between two recently explored families of anomalous exponents: one exhibiting continuous deviations from Sparre-Andersen universality in a Markovian context, and one describing the slow kinetics of the non-Markovian process corresponding to the difference between two independent Brownian maxima.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.