Abstract

In his celebrated 1936 paper on “the generalized distance in statistics,” P.C. Mahalanobis pioneered the idea that, when defined over a space equipped with some probability measure P, a meaningful distance should be P-specific, with data-driven empirical counterpart. The so-called Mahalanobis distance and the corresponding Mahalanobis outlyingness achieve this objective in the case of a Gaussian P by mapping P to the spherical standard Gaussian, via a transformation based on second-order moments which appears to be an optimal transport in the Monge-Kantorovich sense. In a non-Gaussian context, though, one may feel that second-order moments are not informative enough, or inappropriate; moreover, they might not exist. We therefore propose a distance that fully takes the underlying P into account—not just its second-order features—by considering the potential that characterizes the optimal transport mapping P to the uniform over the unit ball, along with a symmetrized version of the corresponding Bregman divergence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.