Abstract

We propose a generalization of Chiral Gravity, which follows from considering a Chern-Simons action for the spin connection with anti-symmetric contorsion. The theory corresponds to Topologically Massive Gravity at the chiral point non-minimally coupled to an additional scalar mode that gathers the torsion degree of freedom. In this setup, the effective cosmological constant (the inverse of the curvature radius of maximally symmetric solutions) is either negative or zero, and it enters as an integration constant associated to the value of the contorsion at infinity. We explain how this is not in conflict with the Zamolodchikov’s c-theorem holding in the dual boundary theory. In fact, we conjecture that the theory formulated about three-dimensional Anti-de Sitter space is dual to a two-dimensional conformal field theory whose right- and left-moving central charges are given by c R = 24k and c L = 0, respectively, being k the level of the Chern-Simons action. We study the classical theory both at the linear and non-linear level. In particular, we show how Chiral Gravity is included as a special sector. In addition, the theory has other sectors, which we explore; we exhibit analytic exact solutions that are not solutions of Topologically Massive Gravity (and, consequently, neither of General Relativity) and still satisfy Brown-Henneaux asymptotically AdS3 boundary conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.