Abstract

The linear mixing model is widely assumed when unmixing hyperspectral images, but it cannot account for endmembers spectral variability. Thus, several workarounds have arisen in the hyperspectral unmixing literature, such as the extended linear mixing model (ELMM), which authorizes endmembers to vary pixelwise according to scaling factors, or local spectral unmixing (LSU) where the unmixing process is conducted locally within the image. In the latter case however, results are difficult to interpret at the whole image scale. In this work, we propose to analyze the local results of LSU within the ELMM framework, and show that it not only allows to reconstruct global endmembers and fractional abundances from the local ones, but it also gives access to the scaling factors advocated by the ELMM. Results obtained on a real hyperspectral image confirm the soundness of the proposed methodology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.