Abstract
Extending the lifetime of photogenerated electrons in semiconductor systems is an important criterion for the conversion of light into storable energy. We have now succeeded in storing electrons in a photoirradiated colloidal molybdenum disulfide (MoS2) suspension, showcasing its unique reversible photoresponsive behavior. The dampened A and B excitonic peaks indicate the accumulation of photogenerated electrons and the minimization of interactions between MoS2 interlayers. The stored electrons were quantitatively extracted by titrating with a ferrocenium ion in the dark, giving ca. 0.2 electrons per MoS2 formula unit. The emergence of the photoinduced A1g* Raman mode and the decrease in zeta potential after irradiation suggest intercalation of counterions to maintain overall charge balance upon electron storage. These results provide insights into the mechanism of photogenerated electron storage in 2D materials and pave the way for the potential application of colloidal 2D materials in electron storage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.