Abstract

Left atrial (LA) enlargement and dysfunction increase the risk of atrial fibrillation (AF). Traditional echocardiographic evaluation of the left atrium has been limited to dimensional and semi-quantification measurement of the atrial component of ventricular filling, with routine measurement of LA function not yet implemented. However, functional parameters, such as LA emptying fraction (LAEF), may be more sensitive markers for detecting AF-related changes than LA enlargement. Speckle-tracking echocardiography has proven to be a feasible and reproducible technology for the direct evaluation of LA function. The clinical application, advantages, and limitations of LA strain and strain rate need to be fully understood. Furthermore, the prognostic value and utility of this technique in making therapeutic decisions for patients with AF need further elucidation. Deep learning neural networks have been successfully adapted to specific tasks in echocardiographic image analysis, and fully automated measurements based on artificial intelligence could facilitate the clinical diagnostic use of LA speckle-tracking images for classification of AF ablation outcome. This review describes the fundamental concepts and a brief overview of the prognostic utility of LA size, LAEF, LA strain and strain rate analyses, and the clinical implications of the use of these measures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call