Abstract
The extensive record of Landsat imagery is commonly used to map urban land-cover and land-use change. Random forest (RF) classification was applied for mapping more detailed urban land-use and change categories than is typically attempted with Landsat data. Two dates of Landsat imagery (1990 and 2015) were utilized with surface reflectance, Vegetation-Impervious-Soil (V-I-S) fractions, grey-level cooccurrence matrix (GLCM) of V-I-S, and temporal variation of V-I-S inputs. GLCM V-I-S and temporal variation of Vegetation as input features of RF classifiers slightly improved accuracies of land use maps. A change map derived from an overlay analysis between the 2015 map and a Landsat-derived urban expansion map was more accurate than one from post-classification comparison of 1990 and 2015 maps. For the Taiwan study area, Transportation Corridor land use tended to lead conversion to Residential and Employment types in relatively undeveloped districts, and extensive urban land-use change occurred in peri-urban areas.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.