Abstract

Managed aquifer recharge (MAR) is a promising technique for enhancing groundwater resources and addressing water scarcity. Particularly, this research highlights the novelty and urgent need for MAR facilities in the Chungcheongnam-do region of South Korea as a solution to augment groundwater resources and combat water scarcity. This research encompasses a comprehensive assessment, ranging from laboratory-scale column experiments to pilot-scale tests, focusing on dissolved organic matter (DOM) characterization, natural organic matter (NOM) removal, and water quality improvement, including biological stability. In the laboratory, DOM characteristics of source water and recharged groundwater were analyzed using advanced dissolved organic characteristic tools, and their potential impacts on water quality, as well as per- and polyfluoroalkyl substances (PFASs) were assessed. DOM, total cell counts, and several PFASs with molecular weights >450 Da (particularly long-chain PFASs showing >99.9 % reduction) were effectively reduced in a laboratory-scale experiment. A laboratory-scale column study revealed that most selected PFASs were not effectively removed. Moving to the pilot-scale, a series of experiments were conducted to assess NOM removal during soil passage. Similar to the results of the laboratory-scale experiment, MAR demonstrated significant potential for reducing NOM concentrations, thus improving water quality. Regarding biological stability, assimilable organic carbon in production well (i.e., final produced water by MAR process) was lower than both two sources of surface water (e.g., SW1 and SW2). This suggests that water derived from PW (i.e., production well) exhibited biological stability, undergoing effective biodegradation by aerobic bacteria during soil passage. The findings from this study highlight the critical importance of implementing MAR techniques in regions facing water scarcity, emphasizing its potential to significantly enhance future water security initiatives.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.