Abstract

Following a green approach, kiwi peels (a waste) were washed in hot water to obtain a water-based polyphenolic extract (KPWW) used to reduce Au3+ (coming from a HAuCl4 water-based solution) for forming gold nanoparticles (AuNPs). Indeed, KPWW, as shown after performing high-performance liquid chromatography-mass spectrometry (HPLC/MS-MS) analysis, is mainly composed by different polyphenols acting as reductant agents, accomplishing a red-ox reaction and decorating the AuNPs-KPWW surface. Spectroscopic and morphologic techniques were used in synergy for investigating the AuNPs-KPWW main features. Polyhedral-shaped plasmonic nanoparticles with a mean size of 30±10 nm and a negative charge of −40 mV were thus obtained. The AuNPs’ stability was assessed under different working conditions, investigating the role of ionic strength, pH, and temperature. The photostability was also assessed by irradiating AuNPs-KPWW with a solar simulator lamp. Both temperature and solar light did not perturb AuNPs-KPWW. Thanks to the presence of polyphenols, the antioxidant and skin-lightening properties were positively demonstrated. Moreover, the protective role of AuNPs in scavenging H2O2 and ·OH was also investigated by inhibiting the oxidation of a biomolecule. The sunscreen ability of AuNPs-KPWW was also estimated, and the theoretical calculation of the sun protection factor (SPF) was determined. Finally, the AuNPs-KPWW biocompatibility was tested on endothelial colony-forming cells and normal dermal fibroblasts as human cell lines, revealing that AuNPs-KPWW did not affect cell viability and did not alter cell morphology, demonstrating their safety and their potential application in nanomedicine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.