Abstract
This paper deals with the analysis of the asymptotic limit toward the derivation of macroscopic equations for a class of equations modeling complex multicellular systems by methods of the kinetic theory. After having chosen an appropriate scaling of time and space, a Chapman–Enskog expansion is combined with a closed, by minimization, technique to derive hyperbolic models at the macroscopic level. The resulting macroscopic equations show how the macroscopic tissue behavior can be described by hyperbolic systems which seem the most natural in this context. We propose also an asymptotic-preserving well-balanced scheme for the one-dimensional hyperbolic model, in the two-dimensional case, we consider a time-splitting method between the conservative part and the source term where the conservative equation is approximated by the Lax–Friedrichs scheme.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Mathematical Models and Methods in Applied Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.