Abstract

Our solution to the Jacobi problem of finding separation variables for natural Hamiltonian systems H = ½p2 + V(q) is explained in the first part of this review. It has a form of an effective criterion that for any given potential V(q) tells whether there exist suitable separation coordinates x(q) and how to find these coordinates, so that the Hamilton-Jacobi equation of the transformed Hamiltonian is separable. The main reason for existence of such criterion is the fact that for separable potentials V(q) all integrals of motion depend quadratically on momenta and that all orthogonal separation coordinates stem from the generalized elliptic coordinates. This criterion is directly applicable to the problem of separating multidimensional stationary Schrodinger equation of quantum mechanics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.