Abstract

Understanding, representing, and reasoning about Points Of Interest (POI) types such as Auto Repair, Body Shop, Gas Stations, or Planetarium, is a key aspect of geographic information retrieval, recommender systems, geographic knowledge graphs, as well as studying urban spaces in general, e.g., for extracting functional or vague cognitive regions from user-generated content. One prerequisite to these tasks is the ability to capture the similarity and relatedness between POI types. Intuitively, a spatial search that returns body shops or even gas stations in the absence of auto repair places is still likely to satisfy some user needs while returning planetariums will not. Place hierarchies are frequently used for query expansion, but most of the existing hierarchies are relatively shallow and structured from a single perspective, thereby putting POI types that may be closely related regarding some characteristics far apart from another. This leads to the question of how to learn POI type representations from data. Models such as Word2Vec that produces word embeddings from linguistic contexts are a novel and promising approach as they come with an intuitive notion of similarity. However, the structure of geographic space, e.g., the interactions between POI types, differs substantially from linguistics. In this work, we present a novel method to augment the spatial contexts of POI types using a distance-binned, information-theoretic approach to generate embeddings. We demonstrate that our work outperforms Word2Vec and other models using three different evaluation tasks and strongly correlates with human assessments of POI type similarity. We published the resulting embeddings for 570 place types as well as a collection of human similarity assessments online for others to use.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call