Abstract
As a typical RNA virus, the genetic information on HIV-1 is entirely stored in RNA. The reverse transcription activity of HIV-1 reverse transcriptase (RT) plays a crucial role in the replication and transmission of the virus. Non-nucleoside RT inhibitors (NNRTIs) block the function of RT by binding to the RNA binding site on RT, with very few targeting viral RNA. In this study, by transforming planar conjugated ligands into a spiro structure, we convert classical Ru(II) DNA intercalators into a nonintercalator. This enables selective binding to HIV-1 transactivation response (TAR) RNA on the outer side of nucleic acids through dual interactions involving hydrogen bonds and electrostatic attraction, effectively inhibiting HIV-1 RT and serving as a selective fluorescence probe for TAR RNA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.