Abstract

In this paper, we propose a new approach for automated verification of informal proofs in Euclidean geometry using a fragment of first-order logic called coherent logic and a corresponding proof representation. We use a TPTP inspired language to write a semi-formal proof of a theorem, that fairly accurately depicts a proof that can be found in mathematical textbooks. The semi-formal proof is verified by generating more detailed proof objects expressed in the coherent logic vernacular. Those proof objects can be easily transformed to Isabelle and Coq proof objects, and also in natural language proofs written in English and Serbian. This approach is tested on two sets of theorem proofs using classical axiomatic system for Euclidean geometry created by David Hilbert, and a modern axiomatic system E created by Jeremy Avigad, Edward Dean, and John Mumma.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.